If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2-30y+216=0
a = 1; b = -30; c = +216;
Δ = b2-4ac
Δ = -302-4·1·216
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-6}{2*1}=\frac{24}{2} =12 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+6}{2*1}=\frac{36}{2} =18 $
| 2x-17=51 | | 1-6.3m=0.12-5.9m | | 40-5x=12+9x | | 3/17=v/8 | | 17/11=13/v | | 8x^2-4x+20=0 | | 2x^2+3x+1=0 | | x^2+(5x-6)(5x-6)=20 | | x+(5x-6)(5x-6)=20 | | -4(3-y)+4=5y-11 | | 22x-4(2-x)=4 | | z/7+2=5 | | 31–-5w=-29 | | 1z+6=3z-8 | | x=(3125-(25x)/(x+100) | | (-6)=21-n | | 156-36y+5y=32 | | x^2+6x+1=-10 | | 4t^2=29t-7 | | 14+m=(-10) | | Y=3+19x | | e/(-7)=8 | | 2x-8+6x=-2x+28-2x | | 10x+1=12-x | | 11x-19=17+9x-20 | | 10x-5+9x=10x+16+6x | | 4x^2-x-9= | | -21/x=7 | | (3x-0,8)^2-2,56=0 | | 5b+20=5b | | 4x^2-x-7= | | (2x+6)+(4x)=180 |